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Exception Introduction
 An exception is an abnormal condition that arises in a 

code sequence at run time
 A Java exception is an object that describes an 

exceptional condition that has occurred in a piece of code
When an exceptional condition arises, an object 

representing that exception is created and thrown in the
method that caused the error

 An exception can be caught to handle it or pass it on
 Exceptions can be generated by the Java run-time system, 

or they can be manually generated by your code
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Exception Handling

Performing action in response to exception
Examples
Exit program (abort)
Deal with exception and continue
Print error message
Request new data
Retry action
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Scope: Representing Exceptions
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Object

Error

Throwable

Exception

LinkageError

VirtualMachoneError

ClassNotFoundException

CloneNotSupportedException

IOException

AWTError

…

AWTException

RuntimeException

…

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Unchecked

Checked

NoSuchElementException

…

Representing Exceptions

Java Exception class hierarchy
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Exception Handling in Java

Java exception handling is managed by via five 
keywords: try, catch, throw, throws, and
finally
Program statements to monitor are contained 

within a try block
If an exception occurs within the try block, it is

thrown
Code within catch block catch the exception 

and handle it
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Example

Output:
Division by zero.

After catch statement.
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try and catch statement
 The scope of a catch clause is restricted to those statements 

specified by the immediately preceding try statement.
 A catch statement cannot catch an exception thrown by 

another try statement.
 The statements that are protected by the try must be 

surrounded by curly braces.
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Multiple Catch Clauses

If more than one can occur, then we use 
multiple catch clauses
When an exception is thrown, each catch

statement is inspected in order, and the first 
one whose type matches that of the exception 
is executed
After one catch statement executes, the others 

are bypassed
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Example
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Caution

Exception subclass must come before any of of their 
superclasses

A catch statement that uses a superclass will catch 
exceptions of that type plus any of its subclasses. So, 
the subclass would never be reached if it come after 
its superclass

 For example, ArithmeticException is a subclass of 
Exception

Moreover, unreachable code in Java generates error
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Example
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Nested try Statements

A try statement can be inside the block of 
another try 
Each time a try statement is entered, the 

context of that exception is pushed on the stack
If an inner try statement does not have a catch, 

then the next try statement’s catch handlers 
are inspected for a match
If a method call within a try block has try

block within it, then then it is still nested try
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Example
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throw
It is possible for your program to to 

throw an exception explicitly
throw ThrowableInstance

Here, ThrowableInstance must be an object 
of type Throwable or a subclass Throwable
There are two ways to obtain a Throwable 

objects:
Using a parameter into a catch clause
Creating one with the new operator
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Example -throw Statements

Output:
Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo
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throws
 If a method is capable of causing an exception that it does not 

handle, it must specify this behavior so that callers of the 
method can guard themselves against that exception

 type method-name parameter-list) throws exception-list

{

// body of method

}

 It is not applicable for Error or RuntimeException, or any 
of their subclasses
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Example: incorrect program
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Example: corrected version

Output:

Inside throwOne.

Caught java.lang.IllegalAccessException: demo
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Finally Statement
 finally creates a block of code that will be executed 

after a try/catch block has completed and before the 
code following the try/catch block.

 finally block will be executed whether or not an 
exception is thrown.

Any time a method is about to return to the caller 
from inside a try/catch block, via an uncaught 
exception or an explicit return statement, the finally 
clause is also executed just before the method returns.

Each try clause requires at least one catch or finally 
clause.
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Example
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Output

inside procA
procA's finally
Exception caught
inside procB
procB's finally
inside procC
procC's finally
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Uncaught Exceptions
class exc0{
public static void main(String args[])
{

int d=0;
int a=42/d;

}
}

 A new exception object is 
constructed and then thrown.

 This exception is caught by the 
default handler provided by the 
java runtime system.

 The default handler displays a 
string describing the exception, 
prints the stack trace from the 
point at which the exception 
occurred and terminates the 
program.

Output:

java.lang.ArithmeticException: / by zero

at exc0.main(exc0.java:4)
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Displaying a Description of an 
Exception

 Throwable overrides the toString() method (defined by 
Object) so that it returns a string containing a description 
of the exception.

 Example:
catch(ArithmeticException e)
{

System.out.println(“Exception: “+e);
}

 Output:
Exception: java.lang.ArithmeticException: / by zero
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User Defined Exception
 Define a subclass of the Exception class.
 The new subclass inherits all the methods of Exception and 

can override them.

class MyException extends Exception{

private int a;

MyException(int i) { a = i;}

public String toString (){ return “MyException[“ + a+”]”;} 

} 
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Continuation of the Example
class test{

static void compute (int a) throws Myexception{
if(a>10) throw new MyException(a);
System.out.println(“Normal Exit”);

}
public static void main(String args[]){

try{
compute(1);
compute(20);
}catch(MyException e){ System.out.println(“Caught “ +e);

}
}
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Example-2
class InvalidRadiusException extends Exception {

private double r;
public InvalidRadiusException(double radius){

r = radius;
}
public void printError(){

System.out.println("Radius [" +  r + "] is not valid");
}

}
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Continuation of Example-2
class Circle    {

double x, y, r;

public Circle (double centreX, double centreY, double radius ) throws 
InvalidRadiusException {

if (r <= 0 ) {
throw new InvalidRadiusException(radius);

}
else {

x = centreX ; y = centreY;  r = radius;
}

}
}
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Continuation of Example-2
class CircleTest {

public static void main(String[] args){
try{

Circle c1 = new Circle(10, 10, -1);
System.out.println("Circle created");

}
catch(InvalidRadiusException e)
{

e.printError();
}

}
}


