
Exception Handling

2

Exception Introduction
 An exception is an abnormal condition that arises in a

code sequence at run time
 A Java exception is an object that describes an

exceptional condition that has occurred in a piece of code
When an exceptional condition arises, an object

representing that exception is created and thrown in the
method that caused the error

 An exception can be caught to handle it or pass it on
 Exceptions can be generated by the Java run-time system,

or they can be manually generated by your code

3

Exception Handling

Performing action in response to exception
Examples
Exit program (abort)
Deal with exception and continue
Print error message
Request new data
Retry action

4

Scope: Representing Exceptions

5

Object

Error

Throwable

Exception

LinkageError

VirtualMachoneError

ClassNotFoundException

CloneNotSupportedException

IOException

AWTError

…

AWTException

RuntimeException

…

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Unchecked

Checked

NoSuchElementException

…

Representing Exceptions

Java Exception class hierarchy

6

Exception Handling in Java

Java exception handling is managed by via five
keywords: try, catch, throw, throws, and
finally
Program statements to monitor are contained

within a try block
If an exception occurs within the try block, it is

thrown
Code within catch block catch the exception

and handle it

7

Example

Output:
Division by zero.

After catch statement.

8

try and catch statement
 The scope of a catch clause is restricted to those statements

specified by the immediately preceding try statement.
 A catch statement cannot catch an exception thrown by

another try statement.
 The statements that are protected by the try must be

surrounded by curly braces.

9

Multiple Catch Clauses

If more than one can occur, then we use
multiple catch clauses
When an exception is thrown, each catch

statement is inspected in order, and the first
one whose type matches that of the exception
is executed
After one catch statement executes, the others

are bypassed

10

Example

11

Caution

Exception subclass must come before any of of their
superclasses

A catch statement that uses a superclass will catch
exceptions of that type plus any of its subclasses. So,
the subclass would never be reached if it come after
its superclass

 For example, ArithmeticException is a subclass of
Exception

Moreover, unreachable code in Java generates error

12

Example

13

Nested try Statements

A try statement can be inside the block of
another try
Each time a try statement is entered, the

context of that exception is pushed on the stack
If an inner try statement does not have a catch,

then the next try statement’s catch handlers
are inspected for a match
If a method call within a try block has try

block within it, then then it is still nested try

14

Example

15

throw
It is possible for your program to to

throw an exception explicitly
throw ThrowableInstance

Here, ThrowableInstance must be an object
of type Throwable or a subclass Throwable
There are two ways to obtain a Throwable

objects:
Using a parameter into a catch clause
Creating one with the new operator

16

Example -throw Statements

Output:
Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

17

throws
 If a method is capable of causing an exception that it does not

handle, it must specify this behavior so that callers of the
method can guard themselves against that exception

 type method-name parameter-list) throws exception-list

{

// body of method

}

 It is not applicable for Error or RuntimeException, or any
of their subclasses

18

Example: incorrect program

19

Example: corrected version

Output:

Inside throwOne.

Caught java.lang.IllegalAccessException: demo

20

Finally Statement
 finally creates a block of code that will be executed

after a try/catch block has completed and before the
code following the try/catch block.

 finally block will be executed whether or not an
exception is thrown.

Any time a method is about to return to the caller
from inside a try/catch block, via an uncaught
exception or an explicit return statement, the finally
clause is also executed just before the method returns.

Each try clause requires at least one catch or finally
clause.

21

Example

22

Output

inside procA
procA's finally
Exception caught
inside procB
procB's finally
inside procC
procC's finally

23

Uncaught Exceptions
class exc0{
public static void main(String args[])
{

int d=0;
int a=42/d;

}
}

 A new exception object is
constructed and then thrown.

 This exception is caught by the
default handler provided by the
java runtime system.

 The default handler displays a
string describing the exception,
prints the stack trace from the
point at which the exception
occurred and terminates the
program.

Output:

java.lang.ArithmeticException: / by zero

at exc0.main(exc0.java:4)

24

Displaying a Description of an
Exception

 Throwable overrides the toString() method (defined by
Object) so that it returns a string containing a description
of the exception.

 Example:
catch(ArithmeticException e)
{

System.out.println(“Exception: “+e);
}

 Output:
Exception: java.lang.ArithmeticException: / by zero

25

User Defined Exception
 Define a subclass of the Exception class.
 The new subclass inherits all the methods of Exception and

can override them.

class MyException extends Exception{

private int a;

MyException(int i) { a = i;}

public String toString (){ return “MyException[“ + a+”]”;}

}

26

Continuation of the Example
class test{

static void compute (int a) throws Myexception{
if(a>10) throw new MyException(a);
System.out.println(“Normal Exit”);

}
public static void main(String args[]){

try{
compute(1);
compute(20);
}catch(MyException e){ System.out.println(“Caught “ +e);

}
}

27

Example-2
class InvalidRadiusException extends Exception {

private double r;
public InvalidRadiusException(double radius){

r = radius;
}
public void printError(){

System.out.println("Radius [" + r + "] is not valid");
}

}

28

Continuation of Example-2
class Circle {

double x, y, r;

public Circle (double centreX, double centreY, double radius) throws
InvalidRadiusException {

if (r <= 0) {
throw new InvalidRadiusException(radius);

}
else {

x = centreX ; y = centreY; r = radius;
}

}
}

29

Continuation of Example-2
class CircleTest {

public static void main(String[] args){
try{

Circle c1 = new Circle(10, 10, -1);
System.out.println("Circle created");

}
catch(InvalidRadiusException e)
{

e.printError();
}

}
}

